skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Xiaofan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. Free, publicly-accessible full text available December 2, 2025
  3. Abstract Technologies to enhance the survivability of wave energy converters (WECs) in harsh ocean environment and reduce the difficulty and cost of deployment and operation are important. Traditional two-body point absorber with a rigid Power Take-off (PTO) may result in two essential problems on the deployment and operation. This study proposes a novel a two-body self-reactive point absorber with a flexible tether drive PTO. This flexible PTO design can avoid the request of supporting structures on the WEC to constrain the motion and harvest energy from multiple degree of freedoms (DOFs) motion without requirement of a taut mooring. System dynamics considering 4-DOF with the proposed flexible PTO system are formulated. A scaled prototype is designed, fabricated, and tested in a wave tank. Results show that the proposed flexible PTO can greatly increase the power absorption and add a reactive peak in the frequency domain. This study reveals that the proposed PTO is desirable for the two-body point absorber and thus holding the advantages of fast and easy deployment with slack mooring and good survivability under large wave conditions. 
    more » « less
  4. Abstract Agriculture provides a large amount of the world’s fish supply. Remote ocean farms need electric power, but most of them are not covered by the electric power grid. Ocean wave energy has the potential to provide power and enable fully autonomous farms. However, the lack of solid mounting structure makes it very challenging to harvest ocean power efficiently; the small-scale application makes high-efficiency conversion hard to achieve. To address these issues, we proposed a self-reactive ocean wave converter (WEC) and winch-based Power Take-Off (PTO) to enable a decent capture width ratio (CWR) and high power conversion efficiency. Two flaps are installed on a fish feed buoy and can move along linear guides. Ocean wave in both heave and surge directions drive the flaps to move and hence both wave potential energy and wave kinetic energy are harvested. The motion is transmitted by a winch to rotation motion to drive an electric generator, and power is harvested. Dynamic modeling is done by considering the harvester structure, the added mass, the damping, and the excitation force from ocean wave. The proposed WEC is simulated in ANSYS AQWA with excitations from regular wave and results in a gross CWR of 13%. A 1:3.5 scaled-down PTO is designed and prototyped. Bench-top experiment with Instron is done and the results show that the mechanical efficiency can reach up to 83% and has potential for real applications. 
    more » « less